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The Lorentz model applied to composite materials 
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Campinas. SHo F?mIo. Brazil 
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Abstract. The dielectric functions of composite moterials consisting of heelectron-type metal 
particles CAg or Cu) and a dielectric host material with e, = 1.0, 2.99 or 6.0 a~ calculated 
using the Maxwell-Cmett model. These function present an anomalous region when the 
interband bansitions of the metal particles occur at frequencies above the resonance frequency 
(7xh = -em), In this case the Lorenb osallator model is used to malyse the optical behaviour 
of the composite material. The Lorentz parmeters are calculated and discussed. 

1. Introduction 

The study of metal-insulator composites has been of interest from both experimental and 
theoretical points of view. The Maxwell-Garnett (MO) theory [I-51 is an effective medium 
theory that has been widely used to describe the optical properties of such systems, when 
one component predominates in concentration. It is assumed that the metal particles are 
small spheres, randomly immersed in the dielectric medium. The electric field (EiJ inside 
the spheres and that (Eout) in the host material are linearly related as given in [6]:  

Ei. = [%/(26h + d l E a a  (1) 

where Eh and E ,  are the dielectric functions of the host material and of the metal particles, 
respectively. In the MG model the mean electric field (EMG),  the mean dipole moment 
(PMG) and the effective dielectric function (eMG) of the composite material are defined as 
follows: 

where f is the volume fraction occupied by the metal particles. From the above relations, 
the dielectric function of the composite material can be written in the form 

EM' = Eh[Em(l + 2 f )  + 2Eh( l  - f)l/[cxn(l - f) + E h @  + f)]. ( 5 )  

In this paper the Lorentz oscillator model [7] is considered in order to analyse the 
calculated MG effective dielectric function (cMG) for a composite medium consisting of a 
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dielectric and free-electron-type metal particles (Ag or Cu), using the experimental values 
of the dielectric functions of the metals given in [SI. UsualIy this model is used to describe 
the optical properties of homogeneous materials, but in the present paper its applicability to 
the composite materials considered is verified, and an interpretation of the parameters that, 
in the Lorentz model, characterize the material is given. 
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2. Dielectric functions of the composite materials 

The behaviour of the dielectric function of metal-insulator composite materials calculated 
using (5) for two different metal particles, Ag and Cu. for three values of the filling factor 
( f )  and for q, = 1 and 6 is presented in figures 1-4. The values of the dielectric functions 
of the small metal particles were obtained from the experimental data [8], as described in 
the appendix. 
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Figure 1. (a) Real ( r r c )  and (b) i m a g i n q  (ayC) 
p m  of the dielcctric function of the mmposjte 
material: eh = 1.0; Ag metal particles (r = 50 A); 
f = 0.03, 0.1, 0.20. 

Figure 2. (a)  Real ( c y c )  md (b) imaginary (cyG) 
parts of the dielectric function of the mmposile 
material: f h  = 6.0; Ag metal p3lticles ( r  = 50 A); 
f = 0.03, 0.1, 0.20. 

The main characteristics of the dielectric function of the composite materials observed 
in these figures can be summarized as follows. 
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Figure 3. (a) Real (e rc )  a d  (b) imaginmy (E?') 
p m  of the dielectric function of the wmposjte 
material: 61, = 1.0; Cu metal particles (r = 50 A); 
f = 0.03, 0.1, 0.20. 

Figure 4. (a )  Real (cy') and (b) imaginary (eMG 
p3m of the dielectric function of the compostte 
mferial: e, = 6.0; Cu metd p3lticles ( r  = 50 A); 
f = 0.03, 0.1, 0.20. 

2. ) 

(1) The existence of a resonance frequency (00) where cy" (Im cMG) is maximum and 
where cy" (Re eMG) has a sharp decline (anomalous region). 

(2) The anomalous region is observed for the composite materials containing Ag 
particles, and in this region the cy" function is symmetric relative to a value + 6 ,  
where 6 tends to zero when f tends to zero. The same behaviour is observed for composite 
materials containing Cu particles when t h  = 6. 

(3) When f and eh increase there is a red shift of the resonance frequency (wo) and an 
increase of the magnitude of E"". 

(4) For low values of w, cy" tends to a constant value, which increases as f increases 
and tends to Eh as f tends to zero. 

3. The Lorentz oscillator model 

The calculated (MG) dielectric functions for composite materials with = 1.0, 2.99 or 
6.0 (Ag particles) and with eh = 6.0 (Cu particles) present a general behaviour similar 
to that predicted by the Lorentz oscillator model. In this model, the optical properties 
of a homogeneous material are expressed by the following Lorentz parameters: 00 (the 
resonance frequency), EO (the value of the dielectric function at low frequencies compared 
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to the electronic excitation frequencies); up (the plasma frequency) and y (the damping 
factor) [71. The dielectric function in Lorentz model is expressed as 
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where E = € 1  + iez. 
€ 1  presents a maximum and a minimum at the frequencies 

with the maximum and minimum values 

E t . -  = E o * o ; / ( 2 Y w o + Y ~ ~ .  
I.mi" 

e presents a maximum, which for y2 < U,' occurs at the frequency 

a;,- % m i  - y= /4  

where it has the value 

2 
€2,- = W,/woY.  

From the above expressions the Lorentz parameters can be written in the form 

4 = (4,ma + W:,min)/2 

Y = (W1,mi" - m:,,)/Zo, 

w;=Ez.maxYOO 

2 

€0 = (El.mi" +Et ,m)/2 .  

The loss energy function ( L  = -IrnI/e), for y 2  <<mi, is maximum at 

"U;, z 0, 2 + @ ; / E O  

Lm,  = ~ o ~ / E ~ ) / y ( o :  + O;/Eo)"z. 

and can be given at this point by the expression 

Table 1 presents the values of the Lorentz parameters for some of the composite 
materials analysed, calculated through expressions (1 1)-(14), where the values of 
m1,min, WI,~,, EI,,,,,, 6 1 . d ~  and €2,- are obtained from the 

In order to test the consistency of the Lorentz model for composite materials the values 
of Lo,ax and L,, calculated from (15) and (16), using the Lorentz parameters, are presented 
in table 2 together with the values obtained from LMG (the MG loss energy function). 

functions. 
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Table 1. The LOmh model parameters for some composite materials, with three values of the 
filling faclor (f ). 

Composite material f fiwg (eV) hy  (eV) h g  (ev) €0 

Ag particles 0.03 3.48 0.21 0.58 1.09 
in eh = 1 0.10 3.40 0.22 1.22 1.34 

0.20 3.37 0.22 1.87 1.76 

Ag particles 0.03 2.27 0.23 1.77 6.14 
in eh = 6 0.10 2.19 0.23 3.26 6.58 

0.20 2.04 0.23 4.56 7.07 

Cu particles 0.03 1.90 0.23 1.07 6.49 
0.10 1.88 0.26 2.20 7.42 
0.20 1.78 0.27 3.32 8.35 

Table 2. Values of Lom, and L,, from the MG model and calculated using the L O ~ Q  
parameters (table 1) for some composite materials wilh three values of the filling factor (f). 

MG model Lorenh model 

Composite f i  %nu hL*nu 
malerial f (ev) Lm, ( W  L,, 
Ag particles 0.03 3.52 0.37 3.52 0.38 
i n € h h = l  0.10 3.57 0.97 3.56 1.06 

0.20 3.65 1.46 3.65 1.40 

Ag pmicles 0.03 2.39 0.16 2.38 0.15 
i n f h = 6  0.10 2.55 0.51 2.53 0.42 

0.20 2.77 0.91 2.66 0.68 

Cu particles 0.03 1.97 0.06 1.94 0.06 
inf11=6 0.10 2.01 0.16 2.04 0.17 

0.20 2.08 0.18 2.11 0.28 

4. Discussion 

The dielectric functions obtained using the MG theory present an anomalous region in a 
frequency range that depends on the intensify of the electric field inside the metal particles. 
This fact can be understood based on equation (1). This equation shows that the electric 
field inside the particles will tend to infinity when zq, = -em. In the present case Eh is real 
but the metal particles present an imaginary part that causes a damping of the electric field 
in its interior. For those metals satisfying the relation 2q, -€,I in a frequency where 

is small, the anomalous region will be observed. The symmetry of the real part of this 
dielectric function (the occurrence of a maximum and a minimum) around 60 is related to the 
existence of interband transitions of the metal in the anomalous region. The first interband 
transition for Ag occurs at 3.9 eV [9], a frequency that is greater than the frequency where 
26b 2 -<,,,I (table 3); consequently, for Ag particles the symmetry is observed (figures 1 
and 2). This does not always happen for Cu particles. The Cu first interband transition 
occurs at 2.1 eV 191, so when 6h = 1, this value is smaller than the value of the frequency 
where the anomalous region happens, and this implies a damping on the maximum and in 
particular on the minimum values of .SF' (figure 3). On the other hand, when Eh = 6.0 
the anomalous region (table 3) is not affected by the interband transition and in figure 4 a 
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dielectric function of the composite material is observed with the same general aspects as 
those of the composite material containing Ag particles. 

C B Pedroso and M B Santos 

Table 3. Real (cmt) and imaginary (6,~) parts of the dielectric function of Ag and Cu pxticles, 
L the resonance frequency (CO), such thal f,,,[(o) = -2rh, for thee values of ch. 

Ag QLUiiCicleS CU Q a I i i C k S  

3 -6.01 0.84 288 -5.99 5.96 2.19 
6 -12.03 1.64 2.30 -12.03 3.94 1.93 

The composite material is like a homogeneous material with a resonance frequency ( W O )  

that corresponds to the frequency where 2 ~ h  E -E,]. The red shift of the anomalous region, 
and consequently of W. that occurs when f increases can be understood by considering the 
different behaviour of insulators and conductors at low frequencies. In a metal the lowest 
resonance frequency tends to zero, once it has a certain number of free electrons. So, the 

red shift could be caused by an increase of the number of free electrons in the composite 
material as a whole when the filling factor increases. The observed WO red shift when Eh 
increases, for a given filling factor, is due to the fact that the real part of the metal dielectric 
function tends to more negative values as w tends to zero. Then the relation 26h E -€,I is 
satisfied for smaller values of w as ~b increases. 

When in the Lorentz model only the electronic excitations are taken into account, €0 
has the value of unity. A modification of this model leads to a valid extension for lattice 
vibrations of a material, once these vibrations occur in lower-energy regions, far away 
from the electronic excitations, and in this extension €0 assumes a value different from 
unity [7]. In the present case the €0 value is approximately equal to Eh for small values 
of the filling factor, so it can assume values other than unity. In addition, an increase in 
€0 is accompanied by a small red shift of the anomalous region and by an increase of the 
dielectric function in this region (table 1 and figures 1, 2, and 4). These facts lead to a 
new and important analogy between the dielectric functions of the composite and of the 
homogeneous materials. In  this sense, the metal particles in the composite material play 
the same role as the ionic oscillators in a lattice, and it is possible to interpret the plasma 
frequency (w,) calculated through the Lorentz model as the oscillation frequency of the 
oscillator assembly (in this case, the metal particles). This frequency is proportional to the 
number of oscillators; consequently, it increases as f increases (table 1). 

The damping factory. which corresponds to the width of the bell-shaped curve EY', is 
approximately constant (table 1) because both metal particles are of the free-electron type 
and the variation of Eh considered is not large enough. 

For a free-electron metal the maximum of the loss function occurs at the electronic 
plasma frequency. In the Lorentz model the loss energy function is maximum for 
Lw:, = 00' + W ~ / E ~ ,  which is equal to wp only when wp >> and €0 = 1 (free- 
electron metals). So for composite materials, in the same way as for the lattice vibrations 
in homogeneous materials, the Lorentz model predicts a value of greater than the 
plasma frequency, and this fact is observed in the loss energy functions calculated using the 
MG theory, 
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5. Conclusions 

The MG dielectric functions of the composite materials considered present an anomalous 
region when the interband transitions of the metal particles occur at frequencies above the 
resonance frequency, 00, where €,,,I E - 2 E h .  In this case the Lorentz oscillator model 
can be used to describe and understand the optical properties of the composite material, w,, 
being the proper oscillator frequency, which can be displaced by changing the value of the 
dielectric function of the host material, and is almost independent of the filling factor. 

In the Lorentz model the plasma frequency is the oscillation frequency of the oscillator 
assembly in the host material. Consequently it increases with the oscillator number, that 
is, with the filling factor, and with the value of the dielectric function of the host material, 
but the frequency ( Lw,,) at which the loss function is maximum is the frequency that 
indicates a decrease of the reflectance function, so this frequency is interpreted as the 
plasma frequency of the composite material. 
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Appendix. The dielectric function of small metal partides 

The dielectric function of freeelectron-type metals can be expressed as a sum of the free- 
electron part plus the contribution of the electronic interband transitions. The free-electron 
part in the Drude model is given by [ 101 

eD(o) = (I  + iw,2r)/w(l - iws) (AI) 

where op is the freeelectron plasma frequency, and r is the mean scattering time for 
conduction electrons. 

In the case of small particles the scattering time must be modified in order to include 
the surface scattering effects. The correction is assumed to be of the form [ 111 

1/rp = 1/rb f vF/r (-42) 

Where VF is the metal Fermi velocity and r is the particle radius, assumed to be equal to 
50 A; r b  and rp are the scattering times for bulk metal and for metal particles respectively. 
In the present work the values of V, and rh for Cu and Ag are taken from [ 101 and [ 111. 

The dielectric function (ep@)) of the metal particles is obtained from the experimental 
bulk values (e,&)) in the following way: 

E p ( d  = h p ( W )  - &w) + €pD(O) (A3) 

where E; and E: are given by (Al) with T equal to Tb and rp respectively. 
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