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Abstract. The dielectric functions of composite materials consisting of free-electron-type metal
particles {Ag or Cu) and a dielectric host material with ¢, = 1.0, 2.99 or 6.0 are calculated
using the Maxwell-Garnett model. These function present an anomalous region when the
interband trapsitions of the metal particles accur at frequencies above the resonance frequency
{26y, = —&p). In this case the Lorentz oscillator model is used to analyse the optical behaviour
of the composite material, The Lorentz parameters are calculated and discussed.

1. Introduction

The study of metal-insnlator composites has been of interest from both experimental and
theoretical points of view. The Maxwell-Garnett (MG} theory [1-5] is an effective medium
theory that has been widely used to describe the optical properties of such systems, when
one component predominates in concentration. It is assumed that the metal particles are
small spheres, randomly immersed in the dielectric medium. The electric field (&) inside
the spheres and that (E,,) in the host material are linearly related as given in [6]:

Ein = [3¢n/(2¢n + €m)] Eou (1)

where ¢, and ¢, are the dielectric functions of the host material and of the metal particles,
respectively. In the MG model the mean electric field (Eyg), the mean dipole moment
(Pyg) and the effective dielectric function (¢MC) of the composite material are defined as
follows:

Eyc = fEn+ (1 — f)Eow (2)
PMG=f-Pin+(1_f)R)ut (3)
4N Py = (eM° - 1) Eng @

where f is the volume fraction occupied by the metal particies. From the above relations,
the dielectric function of the composite material can be written in the form

MO = gylen(l +21) + 2en(1 ~ )}/ [en(l ~ f) + a2 + P (5)

In this paper the Lorentz oscillator model [7] is considered in order to analyse the
calculated MG effective dielectric function (¢M9) for a composite medium consisting of a
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dielectric and free-electron-type metal particles (Ag or Cu), using the experimental values
of the dielectric functions of the metals given in [8]. Usvally this model is used to describe
the optical properties of homogeneous materials, but in the present paper its applicability to
the composite materials considered is verified, and an interpretation of the parameters that,
in the Lorentz model, characterize the material is given.

2, Dielectric functions of the composite materials

The behaviour of the dielectric function of metal—insulator composite materials calculated
using (5) for two different metal particles, Ag and Cu, for three values of the filling factor
{(f) and for e, = 1 and 6 is presented in figures 1-4. The values of the dielectric functions
of the small metal particles were obtained from the experimental data [8], as described in
the appendix.
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Figure 1, (a) Real (ef"c) and (&) imaginary (egm) Figure 2. (a) Real (e}"’G) and (b} imaginary (e%“-")
parts of the dielectric function of the composite parts of the dielectric function of the composite
material: ¢, = 1,0; Ag metal particles (r = 50 A); material ¢, = 6.0; Ag metal particles (r = 30 A);
fF =003, 0.1, 020. F=1003, 0.1, 0.20.

The main characteristics of the dielectric function of the composite materials observed
in these figures can be summarized as follows.
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Figure 3. (@) Real (¢}C) and (b) imaginary (¢}°)  Figure 4. (a) Real (¢}'®) and (b) imaginary (e}')
parts of the dielectric function of the composite parts of the dielectric function of the composite
material: e, = 1.0; Cu metal particles (r = 50 A}  material; € = 6.0; Cu metal particles (r = 50 A);
F =003, 0.1, 0.20. f=003,0.1, 020

(1) The existence of a resonance frequency (wq) where €3¢ (Im €M) is maximum and
where €€ (Re M%) has a sharp decline (anomalous region).

(2) The anomalous region is observed for the composite materials containing Ag
particles, and in this region the €M® function is symmetric relative to a value ¢, + 3,
where & tends to zero when f tends to zero. The same behaviour is observed for composite
materials containing Cu particles when e, = 6.

(3) When f and ¢, increase there is a red shift of the resonance frequency (wg) and an
increase of the magnitude of ¢MC,

(4) For low values of w, ei“G tends to a constant value, which increases as f increases
and tends to &, as f tends to zero.

3. The Lorentz oscillator model

The calculated (MG) dielectric functions for composite materials with ¢, = 1.0, 2.99 or
6.0 (Ag particles) and with ¢, = 6.0 (Cu particles) present a general behaviour similar
to that predicted by the Lorentz oscillator model. In this model, the optical properties
of a homogeneous material are expressed by the following Lorentz parameters: wy (the
resonance frequency), €o (the value of the dielectric function at low frequencies compared
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to the electronic excitation frequencies); w, (the plasma frequency} and ¥ (the damping
factor) [7]. The dielectric function in Lorentz model is expressed as

€ = &+ wl/ (] — o’ — iyw) (6)

where ¢ = €| + I€a.
€ presents a maximum and a minimum at the frequencies

o} o = W F Yy %)

1, min

with the maximum and minimum values

€1,max =50:l:cu§/(2ng+y2). 8

1,min

€, presents a maximum, which for y? & w occurs at the frequency

0 e = 0 — V774 ©)
where it has the value

.0 = 02y (109

From the above expressions the Lorentz parameters can be written in the form

0 = (0% pyox + O in)/2 (1
¥ = (@] mia — OF max)/ 200 (12)
W5 = €2,max ¥ @0 a3
€0 = (€1, min T €t,max)/2- (14)

The loss energy function (L = —Iml/e), for y? « cu%, is maximum at

Lol = wf + /e (15)

and can be given at this point by the expression
Lox = (w}/€3)/ v (@] + o2 /e0) /. (16)

Table 1 presents the values of the Lorentz parameters for some of the composite
materials analysed, calculated through expressions (11)-(14), where the values of
OF, mins @1,max: €1,max» €1,min 20 €2, may are obtained from the €MC functions.

In order to test the consistency of the Lorentz model for composite materials the values
of Lymax and Ly, calculated from (15) and (16), using the Lorentz parameters, are presented
in table 2 together with the values obtained from L™MS (the MG loss energy function).
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Table 1. The Lorentz model parameters for some composite materials, with three values of the
filling factor (f).

Composite material f heg (@Y) By (V) hay (€V) €p
Ag particles 0.03 3.48 021 0.58 1.09
iney =1 0.10 340 022 122 134
0.20 3.37 022 1.87 1.76
Ag particles 0.03 227 0.23 1.77 6.14
ine, =6 Q.10 2.19 0.23 3.26 6.58
0.20 204 0.23 4.56 707
Cu particles 0.03 1.90 0.23 1.07 6.49
iney=6 0.10 1.38 0.26 220 742
0.20 1.78 0.27 332 8.35

Table 2. Values of Yy and Lmax from the Mo model and calculated using the Lorentz
parameters {table 1) for some composite materials with three values of the filling factor (f).

MG model Lorentz mode}

Composite R Leoman A lwma
material f (eV) Limax V) Lnax
Ag particles 0.03 352 0.37 352 0.38
inep=1 0.10 3.57 0.97 3.56 1.06

0.20 3.65 1.46 3.65 1.40
Ag pasticles 0.03 239 016 2.38 0.15
iney=6 0.10 2.55 051 253 0.42

0.20 .17 091 2.66 0.68
Cu particles 0.03 1.97 006 1,94 0.06
iney =6 0.10 2.01 0.16 2.04 0.17

0.20 2.08 0.18 211 0.28

4. Discussion

The dielectric functions obtained using the MG theory present an anomalous region in a
frequency range that depends on the intensity of the electric field inside the metal particies.
This fact can be understood based on equation (1). This equatton shows that the electric
field inside the particles will tend to infinity when 2e;, = —ep,. In the present case e, is real
but the metal particles present an imaginary part that causes a damping of the electric field
in its interior. For those metals satisfying the relation 2¢, = —e¢py; in a frequency where
€m2 1s small, the anomalous region will be observed. The symmetry of the real part of this
dielectric function (the occurrence of a maximum and a minimum) around &g is related to the
exigtence of interband transitions of the metal in the anomalous region. The first interband
transition for Ag occurs at 3.9 eV [9], a frequency that is greater than the frequency where
2ep = —em (table 3); consequently, for Ag particles the symmefry is observed (figures 1
and 2). This does not always happen for Cu particles. The Cu first interband mransition
occurs at 2.1 eV [9], so when ¢, = 1, this value is smaller than the value of the frequency
where the anomalous region happens, and this implies a damping on the maximum and in
particular on the minimum values of s{“G (figure 3). On the other hand, when &, = 6.0
the anomalous region (table 3) is not affected by the interband transition and in figure 4 a
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dielectric function of the composite material is observed with the same general aspects as

those of the composite material containing Ag particles.

Table 3. Real (€m1} and imaginary (¢m2) parts of the dielectric function of Ag and Cu particles,
at the resgnance frequency (w), such that e {w) = —2¢y, for three values of ¢,

Ag particles Cu particles
€ €mi €m2 fiw (eV) €ml m2 fiw {€V)
1 —-2.00 0.64 349 ~2.00 579 337
3 -6.01 0.834 2.88 =599 5.96 2,19
6 —12.03 [.64 2.30 -12.03 3.94 193

The composite materiat is like a homogeneous material with a resonance frequency {(wp)
that corresponds to the frequency where 2¢,, = —ey;. The red shift of the anomalous region,
and consequently of wy, that occurs when f increases can be understood by considering the
different behaviour of insulators and conductors at low frequencies. In a metal the lowest
resonance frequency tends to zero, once it has a certain aumber of free electrons. So, the
wp red shift could be caused by an increase of the number of free electrons in the composite
material as a whole when the filling factor increases. The observed wp red shift when «;
increases, for a given filling factor, is due to the fact that the real part of the metal dielectric
function tends to more negative values as w tends to zero. Then the relation 2ep = —epy is
satisfied for smaller values of w as g, increases.

When in the Lorentz model only the electronic excitations are taken into account, €
has the value of unity. A modification of this model leads to a valid extension for lattice
vibrations of a material, once these vibrations occur in lower-energy regions, far away
from the electronic excitations, and in this extension ¢y assumes a value different from
unity [7]. In the present case the ¢y value is approximately equal to €, for small values
of the filling factor, so it can assume values other than unity. In addition, an increase in
€y is accompanied by a small red shift of the anomalous region and by an increase of the
dielectric function in this region (table 1 and figures 1, 2, and 4). These facts lead to a
new and important analogy between the dielectric functions of the composite and of the
homogeneous materials. In this sense, the metal particles in the composite material play
the same role as the ionic oscillators in a lattice, and it is possible to interpret the plasma
frequency (wg) calculated through the Lorentz model as the oscillation frequency of the
oscillator assembly (in this case, the metal particles). This frequency is proportional to the
number of oscillators; consequently, it increases as f increases (table 1).

The damping factor 3, which corresponds to the width of the bell-shaped curve eé"'G, is
approximately constant {table I} because both metal particles are of the free-electron type
and the variation of €, considered is not large enough.

For a free-clectron metal the maximum of the loss function occurs at the electronic
plasma frequency. In the Lorentz model the loss energy function is maximum for
“wh.n = @i + of/eo, which is equal to w, only when w, > @ and ¢ = 1 (free-
electron metals). So for composite materials, in the same way as for the lattice vibrations
in homogeneous materials, the Lorentz model predicts a value of “emax greater than the
plasma frequency, and this fact is observed in the loss energy functions caleutated using the
MG theory.
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5. Conclusions

The MG dielectric functions of the composite materials considered present an anomalous
region when the interband transitions of the metal particles occur at frequencies above the
resonance frequency, wg, where ¢ = —2¢,. In this case the Lorentz oscillator model
can be used to describe and understand the optical properties of the compostte material, wy
being the proper oscillator frequency, which can be displaced by changing the value of the
dielectric function of the host material, and is almost independent of the filling factor.

In the Lorentz model the plasma frequency is the oscillation frequency of the oscillator
assembly in the host material. Consequently it increases with the oscillator number, that
is, with the filling factor, and with the value of the dielectric function of the host material,
but the frequency (“wma) at which the loss function is maximum is the frequency that
indicates a decrease of the reflectance function, so this frequency is interpreted as the
plasma frequency of the composite material.
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Appendix. The dielectric function of small metal particles

The dielectric function of free-electron-type metals can be expressed as a sum of the free-
electron part plus the contribution of the electronic interband transitions. The free-electron
part in the Drude model is given by [10]

P (w) = (1 +iwlt)/w(l — iwr) (A1)

where w, is the free-clectron plasma frequency, and v is the mean scattering time for
conduction electrons.

In the case of small particles the scattering time must be modified in order to include
the surface scattering effects. The correction is assumed to be of the form [I11]

=1/t + VE/r (A2)

Where Vg is the metal Fermi velocity and r is the particle radius, assumed to be equal to
50 A; 7 and Tp are the scattering times for bulk metal and for metal particles respectively.
In the present work the values of Vg and 7, for Cu and Ag are taken from [10] and [11].

The dielectric function (¢,(w)) of the metal particles is obtained from the experimental

bulk values (e.xp{w)) in the following way:
() = €exp(@) — & (@) + €] () (A3)

where €D and el? are given by (Al) with v equal to 7, and 7, respectively.
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